Skip to main content
Yong Han

Yong Han

Position
  • Research Scientist
  • Materials Science
  • Condensed Matter Physics
  • Chemical Physics
  • Computational Physics and Chemistry

Contact Info

307 Wilhelm Hall
2332 Pammel Dr.
Ames
,
IA
50011-1025

Education

  • Ph.D., Materials Science and Engineering, University of Utah (2007)
  • M.S., Physics, University of Utah (2004)

More Information

 

Education and Employment

  • Research Scientist, Department of Physics and Astronomy, Iowa State University; Ames Laboratory, U. S. Department of Energy (2011-Present)
  • Postdoctoral Research Associate, Institute for Physical Research and Technology, Iowa State University; Ames Laboratory, U. S. Department of Energy (2007-2011)
  • Graduate Research Assistant, Department of Materials Science and Engineering, University of Utah (2003-2007)
  • Graduate Teaching Assistant, Department of Physics, University of Utah (2001-2003)

Current Research Interests

  • Computational simulation and physical modeling from atomic to mesoscopic scales; thermodynamic and kinetic properties of bulk materials as well as surfaces and interfaces of materials; growth mechanisms of solid nanofilms; self-assembly, self-organization, and quantum effects of various nanostructures; nanofilms, nanowires, monatomic chains, nanotubes, nanoclusters, graphene, topological insulators, silica nanopores; chemical adsorption on material surface; electric and magnetic properties of surface-related nanostructures; electronic structure and energy band analyses for bulk and surface systems, etc.
  • First-principles (or ab initio) density functional theory; kinetic Monte Carlo simulation; molecular dynamic simulation; atomistic and coarse-grained models; electron-gas and jellium models; climbing elastic nudged band method; empirical potentials; step flow and step dynamics; diffusion rate equation analysis; continuum modeling, etc.
  • Some of my current theoretical and computational research projects are often closely related to experimental observations, e.g., frequently from scanning tunneling microscope experimental technology. These experimental observations are generally from our collaboration groups, as well as from published literature.

Selected Publications

  1. Atomic-scale manipulation of buried graphene–silicon carbide interface by local electric field, M. Kolmer, J. Hall, S. Chen, S. Roberts, Z. Fei, Y. Han, and M. C. Tringides,  Commun. Phys. 7, 16 (2024).
  2. Capturing Rare-Earth Elements by Synthetic Aluminosilicate MCM-22: Mechanistic Understanding of Yb(III) Capture, P. Chatterjee, Y. Han, T. Kobayashi, K. K. Verma, M. Mais, R. K. Behera, T. H. Johnson, T. Prozorov, J. W. Evans, I. I. Slowing, and W. Huang, ACS Appl. Mater. Interfaces 15, 54192 (2023).
  3. Degeneracy in intercalated Pb phases under buffer-layer graphene on SiC(0001) and diffuse moiré spots in surface diffraction, Y. Han, S. Chen, J. Hall, S. Roberts, M. Kolmer, J. W. Evans, and M. C. Tringides, J. Phys. Chem. Lett. 14, 7053 (2023).
  4. DFT-based mesoscopic interactions of N adatoms on Cu(100), W. Kappus and Y. Han, Surf. Sci. 736, 122330 (2023).
  5. Dependence of predicted bulk properties of hexagonal hydroxyapatite on exchange–correlation functional, X. Wang and Y. Han, Comput. Mater. Sci. 224, 112153 (2023).
  6. Thermodynamics and kinetics of Pb intercalation under graphene on SiC (0001), Y. Han, M. Kolmer, M. C. Tringides, and J. W. Evans, Carbon 205, 336 (2023).
  7. Targeted Dy intercalation under graphene/SiC for tuning its electronic band structure, S. Chen, Y. Han, M. Kolmer, J. Hall, M. Hupalo, J. W. Evans, and M. C. Tringides, Phys. Rev. B 107, 045408 (2023).
  8. Interlayer spacing in pillared and grafted MCM-22 type silicas: density functional theory analysis versus experiment, Y. Han, P. Chatterjee, S. B. Alam, T. Prozorov, I. I. Slowing, and J. W. Evans, Phys. Chem. Chem. Phys. 25, 4680 (2023).
  9. A first-principles and mesoscopic model analysis for pair, trio, and quarto interactions of Au adatoms on Ag(100), Y. Han and W. Kappus, Surf. Sci. 727, 122191 (2023).
  10. An evaluation for geometries, formation enthalpies, and dissociation energies of diatomic and triatomic (C, H, N, O), NO3, and HNO3 molecules from the PAW DFT method with PBE and optB88-vdW functionals, Y. Han, AIP Adv. 12, 125009 (2022).
  11. Unusual flat and extended morphology of intercalated Cu under MoS2, D. Jing, Y. Han, J. W. Evans, M. Kolmer, Z. Fei, and M. C. Tringides, Phys. Rev. Mater. 6, 094008 (2022).
  12. Thermodynamically driven formation of intercalated Cu carpets from supported Cu pyramids on MoS2, Y. Han, D. Jing, Y. Luan, C.-J. Wang, M. Kolmer, Z. Fei, M. C. Tringides, and J. W. Evans, J. Phys. Chem. Lett. 13, 6651 (2022).
  13. Modeling of linear nanopores in a-SiO2 tuning pore surface structure, E. L. Fought, Y. Han, T. L. Windus, I. I. Slowing, T. Kobayashi, and J. W. Evans, Microporous Mesoporous Mater. 341, 112077 (2022).
  14. Thermodynamics and kinetics of H adsorption and intercalation for graphene on 6H-SiC(0001) from first-principles calculations, Y. Han, J. W. Evans, M. C. Tringides, J. Vac. Sci. Technol. A 40, 012202 (2022).
  15. Dy adsorption on and intercalation under graphene on 6H-SiC(0001) surface from first-principles calculations, Y. Han, J. W. Evans, and M. C. Tringides, Phys. Rev. Mater. 5, 074004 (2021).
  16. Energy barriers for Dy and H penetrating graphene on 6H-SiC(0001) and freestanding bilayer graphene from first-principles calculations, Y. Han, J. W. Evans, and M. C. Tringides, Appl. Phys. Lett. 119, 033101 (2021).
  17. Shape stability of truncated octahedral fcc metal nanocrystals, K. C. Lai, M. Chen, J. Yu, Y. Han, W. Huang, and J. W. Evans, ACS Appl. Mater. Interfaces 13, 51954 (2021).
  18. Sierpiński structure and electronic topology in Bi thin films on InSb(111)B surfaces, C. Liu, Y. Zhou, G. Wang, Y. Yin, C. Li, H. Huang, D. Guan, Y. Li, S. Wang, H. Zheng, C. Liu, Y. Han, J. W. Evans, F. Liu, and J. Jia, Phys. Rev. Lett. 126, 176102 (2021).
  19. Effective fragment potential-based molecular dynamics studies of diffusion in acetone and hexane, Y. L. Kim, Y. Han, J. W. Evans, and M. S. Gordon, J. Phys. Chem. A 125, 3398 (2021).
  20. Mechanism of metal intercalation under graphene through small vacancy defects, Y. Liu, X Liu, C.-Z. Wang, Y. Han, J. W. Evans, A. Lii-Rosales, M. C. Tringides, and P. A. Thiel, J. Phys. Chem. C 125, 6954 (2021).
  21. Competitive formation of intercalated versus supported metal nanoclusters during deposition on layered materials with surface point defects, Y. Han, A. Lii-Rosales, M. C. Tringides, and J. W. Evans, J. Chem. Phys. 154, 024703 (2021).
  22. Encapsulation of metal nanoparticles at the surface of a prototypical layered material, A. Lii-Rosales, Y. Han, D. Jing, M. C. Tringides, S. Julien, K.-T. Wan, C.-Z. Wang, K. C. Lai, J. W. Evans, and P. A. Thiel, Nanoscale 13, 1485 (2021).
  23. Light scattering by pores in YAG transparent ceramics simulated by DDA model, Y. Yang, N. Ma, J. Duan, J. Qi, Y. Zhao, Y. Wang, Y. Han, Z. Huang, and T. Lu, J. Am. Ceram. Soc. 104, 256 (2021).
  24. Thermodynamic preference for atom adsorption on versus intercalation into multilayer graphene, W. Li, L. Huang, M. C. Tringides, J. W. Evans, and Y. Han, J. Phys. Chem. Lett. 11, 9725 (2020).
  25. Surface structure of linear nanopores in amorphous silica: Comparison of properties for different pore generation algorithms, Y. Han, I. I. Slowing, and J. W. Evans, J. Chem. Phys. 153, 124708 (2020).
  26. Search for encapsulation of platinum, silver, and gold at the surface of graphite, A. Lii-Rosales, Y. Han, D. Jing, M. C. Tringides, and P. A. Thiel, Phys. Rev. Res. 2, 033175 (2020).
  27. Reshaping of Truncated Pd Nanocubes: Energetic and Kinetic Analysis Integrating Transmission Electron Microscopy with Atomistic-Level and Coarse-Grained Modeling, K. C. Lai, M. Chen, B. Williams, Y. Han, C.-K. Tsung, W. Huang, and J. W. Evans, ACS Nano 14, 8551 (2020).
  28. Low-index surface energies, cleavage energies, and surface relaxations for crystalline NiAl from first-principles calculations, L. Wang, K C. Lai, L. Huang, J. W. Evans, and Y. Han, Surf. Sci. 695, 121532 (2020).
  29. Strain-enhanced metallic intermixing in shape-controlled multilayered core–shell nanostructures: Toward shaped intermetallics, B. P. Williams, A. P. Young, I. Andoni, Y. Han, W.-S. Lo, M. Golden, J. Yang, L.-M. Lyu, C.-H. Kuo, J. W. Evans, W. Huang, and C.-K. Tsung, Angew. Chem. Int. Ed. 59, 10574 (2020).
  30. Adsorption, intercalation, diffusion, and adhesion of Cu at the 2H-MoS2 (0001) surface from first-principles calculations, Y. Han, M. C. Tringides, J. W. Evans, and P. A. Thiel, Phys. Rev. Res. 2, 013182 (2020).
  31. Fundamentals of Au(111) surface dynamics: Coarsening of two-dimensional Au islands, P. M. Spurgeon, K. C. Lai, Y. Han, J. W. Evans, and P. A. Thiel, J. Phys. Chem. C 124, 7492 (2020).
  32. Shapes of Fe nanocrystals encapsulated at the graphite surface, A. Lii-Rosales, Y. Han, S. E. Julien, O. Pierre-Louis, D. Jing, K.-T. Wan, M. C. Tringides, J. W. Evans, and P. A. Thiel, New J. Phys. 22, 023016 (2020).
  33. Fabricating Fe nanocrystals via encapsulation at the graphite surface, A. Lii-Rosales, Y. Han, K. C. Lai, D. Jing, M. C. Tringides, J. W. Evans, and P. A. Thiel, J. Vac. Sci. Technol. A 37, 061403 (2019).
  34. Energy barriers for Pb adatom diffusion on stepped ultrathin Pb(111) quantum nanofilms: First-principles calculations, Y. Han, J. W. Evans, and F. Liu, Phys. Rev. B 100, 195405 (2019).
  35. Reshaping, intermixing, and coarsening for metallic nanocrystals: Nonequilibrium statistical mechanical and coarse-grained modeling, K. C. Lai, Y. Han, P. Spurgeon, W. Huang, P. A. Thiel, D.-J. Liu, and J. W. Evans, Chem. Rev. 119, 6670 (2019).
  36. Thermodynamic stabilities of perfect and vacancy-defected Li2TiO3 (001) surfaces from first-principles analyses, Y. Jiang, Y. Shi, X. Xiang, J. Qi, Y. Han, Z. Liao, and T. Lu, Phys. Rev. Appl. 11, 054088 (2019).
  37. Squeezed nanocrystals: equilibrium configuration of metal clusters embedded beneath the surface of a layered material, S. E. Julien, A. Lii-Rosales, K.-T. Wan, Y. Han, M. C. Tringides, J. W. Evans, and P. A. Thiel, Nanoscale 11, 6445 (2019).
  38. Energetics of Cu adsorption and intercalation at graphite step edges, Y. Han, A. Lii-Rosales, M. C. Tringides, J. W. Evans, and P. A. Thiel, Phys. Rev. B 99, 115415 (2019).
  39. Kinetics, energetics, and size dependence of the transformation from Pt to ordered PtSn intermetallic nanoparticles, M. Chen, Y. Han, T. W. Goh, R. Sun, R. V. Maligal-Ganesh, Y. Pei, C.-K. Tsung, J. W. Evans, and W. Huang, Nanoscale 11, 5336 (2019).
  40. Defect‐fluorite Gd2Zr2O7 ceramics under helium irradiation: Amorphization, cell volume expansion, and multi‐stage bubble formation, Z. Huang, N. Ma, J. Qi, X. Guo, M. Yang, Z. Tang, Y. Zhang, Y. Han, D. Wu, and T. Lu, J. Am. Ceram. Soc. 102, 4911 (2019).
  41. Surface energies, adhesion energies, and exfoliation energies relevant to copper-graphene and copper-graphite systems, Y. Han, K. C. Lai, A. Lii-Rosales, M. C. Tringides, J. W. Evans, and P. A. Thiel, Surf. Sci. 685, 48 (2019).
  42. Rapid fabrication of fine-grained Gd2-xNdxZr2-5xCe5xO7 ceramics by microwave sintering, Y. Zhang, Z. Huang, J. Qi, Y. Han, Z. Tang, W. Han, J. Duan, Y. Zeng, H. Zhang, and T. Lu, J. Alloy Compd. 781, 710 (2018).
  43. Reverse-engineering of graphene on metal surfaces: A case study of embedded ruthenium,A. Lii-Rosales, Y. Han, K. M. Yu, D. Jing, N. A. Anderson, D. Vaknin, M. C. Tringides, J. W. Evans, M. S. Altman, and P. A. Thiel, Nanotechnology 29, 505601 (2018).
  44. Anisotropic diffusion of a charged tritium interstitial in Li2TiO3 from first-principles calculations, Y. Shi, J. Qi, Y. Han, and T. Lu, Phys. Rev. Appl. 10, 024021 (2018).
  45. SiO2-enhanced structural stability and strong adhesion with a new binder of konjac glucomannan enables stable cycling of silicon anodes for lithium-ion batteries, S. Guo, H. Li, Y. Li, Y. Han, K. Chen, G. Xu, Y. Zhu, and X. Hu, Adv. Energy Mater. 8, 1800434 (2018).
  46. Formation of multilayer Cu islands embedded beneath the surface of graphite: Characterization and fundamental insights, A. Lii-Rosales, Y. Han, J. W. Evans, D. Jing, Y. Zhou, M. C. Tringides, M. Kim, C.-Z. Wang, and P. A. Thiel, J. Phys. Chem. C 122, 4454 (2018).
  47. Thickness-dependent energetics for Pb adatoms on low-index Pb nanofilm surfaces: First-principles calculations, W. Li, L. Huang, R. G. S. Pala, G.-H. Lu, F. Liu, J. W. Evans, and Y. Han, Phys. Rev. B 98, 205409 (2017).
  48. Nucleation and growth kinetics for intercalated islands during deposition on layered materials with isolated pointlike surface defects, Y. Han, A. Lii-Rosales, Y. Zhou, C.-J. Wang, M. Kim, M. C. Tringides, C.-Z. Wang, P. A. Thiel, and James W. Evans, Phys. Rev. Mater. 1, 053403 (2017).
  49. Deformation restraint of tape-casted transparent alumina ceramic wafers from optimized lamination, Z. Feng, J. Qi, Y. Han, and T. Lu, Ceram. Int. 44, 1059 (2018).
  50. Capture zone area distributions for nucleation and growth of islands during submonolayer deposition, Y. Han, M. Li, and J. W. Evans, J. Chem. Phys. 145, 211911 (2016).
  51. Ab Initio thermodynamics and kinetics for coalescence of two-dimensional nanoislands and nanopits on metal (100) surfaces, Y. Han, C. R. Stoldt, P. A. Thiel, and J. W. Evans, J. Phys. Chem. C 93, 155416 (2016).
  52. Point island models for nucleation and growth of supported nanoclusters during surface deposition, Y. Han, É. Gaudry, T. J. Oliveira, and J. W. Evans, J. Chem. Phys. 145, 211904 (2016).
  53. Tailoring kinetics on a topological insulator surface by defect-induced strain: Pb mobility on Bi2Te3, W.-K. Huang, K.-W. Zhang, C.-L. Yang, H. Ding, X. Wan, S.-C. Li, J. W. Evans, and Y. Han, Nano Lett. 16, 4454 (2016).
  54. Submonolayer Ag films on Fe(100): A first-principles analysis of energetics controlling adlayer thermodynamics and kinetics, W. Li, L. Huang, J. W. Evans, and Y. Han, Phys. Rev. B 93, 155416 (2016).
  55. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations, Y. Han and J. W. Evans, J. Chem. Phys. 143, 164706 (2015).
  56. Growth morphology and properties of metals on graphene, X. Liu, Y. Han, J. W. Evans, A. K. Engstfeld, R. J. Behm, M. C. Tringides, M. Hupalo, H.-Q. Lin, L. Huang, K.-M. Ho, D. Appy, P. A. Thiel, and C.-Z. Wang, Prog. Surf. Sci. 90, 397 (2015).
  57. Directing anisotropic assembly of metallic nanoclusters by exploiting linear trio interactions and quantum size effects: Au chains on Ag(100) thin films, Y. Han and J. W. Evans, J. Phys. Chem. Lett. 6, 2194 (2015).
  58. Analysis of magic lengths in growth of supported metallic nanowires, Y. Han, Mater. Res. Express 1, 045030 (2014).
  59. Determining whether metals nucleate homogeneously on graphite: A case study with copper, D. Appy, H. Lei, Y. Han, C.-Z. Wang, M. C. Tringides, D. Shao, E. J. Kwolek, J. W. Evans, and P. A. Thiel, Phys. Rev. B 90, 95406 (2014).
  60. Real-time ab initio KMC simulation of the self-Assembly and sintering of bimetallic epitaxial nanoclusters: Au + Ag on Ag(100), Y. Han, D.-J. Liu, and J. W. Evans, Nano Lett. 14, 4646 (2014).
  61. Analytic formulations for one-dimensional decay of rectangular homoepitaxial islands during coarsening on anisotropic fcc (110) surfaces, C.-J. Wang, Y. Han, H. Walen, S. M. Russell, P. A. Thiel, and J. W. Evans, Phys. Rev. B 88, 155434 (2013).
  62. Anisotropic coarsening: one-dimensional decay of Ag islands on Ag(110), Y. Han, S. M. Russell, A. R. Layson, H. Walen, C. D. Yuen, P. A. Thiel, and J. W. Evans, Phys. Rev. B 87, 155420 (2013).
  63. Atomistic modeling of the directed-assembly of bimetallic Pt-Ru nanoclusters on Ru(0001)-supported monolayer graphene, Y. Han, A. K. Engstfeld, R. J. Behm, and J. W. Evans, J. Chem. Phys. 138, 134703 (2013).
  64. Atomistic modeling of Ru nanocluster formation on graphene/Ru(0001): Thermodynamically versus kinetically directed-assembly, Y. Han, A. K. Engstfeld, C.-Z. Wang, L. D. Roelofs, R. J. Behm, and J. W. Evans, MRS Proc. 1498, 249 (2012).
  65. Interplay between quantum size effect and strain effect on growth of nanoscale metal thin films, M. Liu, Y. Han, L. Tang, J.-F. Jia, Q.-K. Xue, and F. Liu, Phys. Rev. B 86, 125427 (2012).
  66. Directed assembly of Ru nanoclusters on Ru(0001)-supported graphene: STM studies and atomistic modeling, A. K. Engstfeld, H. E. Hoster, R. J. Behm, L. D. Roelofs, X. Liu, C.-Z. Wang, Y. Han, and J. W. Evans, Phys. Rev. B 86, 085442 (2012).
  67. Formation of a novel ordered Ni3Al surface structure by codeposition on NiAl(110), Y. Han, B. Ünal, and J. W. Evans, Phys. Rev. Lett. 108, 216102 (2012).
  68. Atomistic modeling of alloy self-growth by vapor deposition: Ni and Al on NiAl(110), Y. Han and J. W. Evans, MRS Proc. 1411, 63 (2012).
  69. Formation of irregular Al islands by room-temperature deposition on NiAl(110), D. Jing, Y. Han, B. Ünal, J. W. Evans, and P. A. Thiel, MRS Proc. 1318, 207 (2011).
  70. Far-from-equilibrium film growth on alloy surfaces: Ni and Al on NiAl(110), Y. Han, D. Jing, B. Ünal, P. A. Thiel, and J. W. Evans, Phys. Rev. B 84, 113414 (2011).
  71. Temperature-dependent growth shapes of Ni nanoclusters on NiAl(110), Y. Han, B. Ünal, D. Jing, P. A. Thiel, and J. W. Evans, J. Chem. Phys. 135, 084706 (2011).
  72. Self-assembly of metal nanostructures on binary alloy surfaces, T. Duguet, Y. Han, C. Yuen, D. Jing, B. Ünal, J. W. Evans, and P. A. Thiel, Proc. Natl. Acad. Sci. U.S.A. 108, 989 (2011).
  73. Variation of growth morphology with chemical composition of terraces: Ag on a twofold surface of a decagonal Al-Cu-Co quasicrystal, T. Duguet, B. Ünal, Y. Han, J. W. Evans, J. Ledieu, C. J. Jenks, J. M. Dubois, V. Fournée, and P. A. Thiel, Phys. Rev. B 82, 224204 (2010).
  74. Shell structure and phase relations in electronic properties of metal nanowires from an electron-gas model, Y. Han and D.-J. Liu, Phys. Rev. B 82, 125420 (2010).
  75. From initial to late stages of epitaxial thin film growth: STM analysis and atomistic or coarse-grained modeling, J. W. Evans, Y. Han, B. Ünal, M. Li, K. J. Caspersen, D. Jing, A. R. Layson, C. R. Stoldt, T. Duguet, and P. A. Thiel, AIP Conf. Proc. 1270, 26 (2010).
  76. Nanoscale "quantum" islands on metal substrates: microscopy studies and electronic structure analyses, Y. Han, B. Ünal, D. Jing, P. A. Thiel, J. W. Evans, and D.-J. Liu, Materials 3, 3965 (2010).
  77. Comment on "Capture-zone scaling in island nucleation: Universal fluctuation behavior", M. Li, Y. Han, and J. W. Evans, Phys. Rev. Lett. 104, 149601 (2010).
  78. Formation and coarsening of Ag(110) bilayer islands on NiAl(110): STM analysis and atomistic lattice-gas modeling, Y. Han, B. Ünal, D. Jing, F. Qin, C. J. Jenks, D.-J. Liu, P. A. Thiel, and J. W. Evans, Phys. Rev. B 81, 115462 (2010).
  79. Quantum size effects on metal nanofilms, Y. Han, Modern Physics 21(4), 3 (2009).
  80. Quantum size effects in metal nanofilms: comparison of an electron-gas model and density functional theory calculations, Y. Han and D.-J. Liu, Phys. Rev. B 80, 155404 (2009).
  81. Formation of complex wedding-cake morphologies during homoepitaxial film growth of Ag on Ag(111): atomistic, step-dynamics, and continuum modeling, M. Li, Y. Han, P. A. Thiel, and J. W. Evans, J. Phys.: Condens. Matt. 21, 084216 (2009).
  82. Single crystal growth via a grain rotation mechanism within amorphous matrix, J. Fang, P. Kong, B. Ding, X. Song, Y. Han, H. Hahn, and H. Gleiter, Appl. Phys. Lett. 93, 153115 (2008).
  83. A jellium model analysis on quantum growth of metal nanowires and nanomesas, Y. Han, Front. Phys. 3, 436 (2008).
  84. Quantum stabilities and growth modes of thin metal films: Unsupported and NiAl-supported Ag(110) and Ag(100), Y. Han, J. W. Evans, and D.-J. Liu, Surf. Sci. 602, 2532 (2008).
  85. Flat-surface, step-edge, facet-facet, and facet-step diffusion barriers in growth of a Pb mesa, Y. Han, G.-H. Lu, B.-J. Lee, and F. Liu, Surf. Sci. 602, 2284 (2008).
  86. How a silver dendritic mesocrystal converts to a single crystal, J. Fang, B. Ding, X. Song, and Y. Han, Appl. Phys. Lett. 92, 173120 (2008).
  87. Kinetics of facile bilayer island formation at low temperature: Ag/NiAl(110), Y. Han, B. Unal, F. Qin, D. Jing, C. J. Jenks, D.-J. Liu, P. A. Thiel, and J. W. Evans, Phys. Rev. Lett. 100, 116105 (2008).
  88. Kinetics of mesa overlayer growth: climbing of adatoms onto the mesa top, Y. Han, F. Liu, S.-C. Li, J.-F. Jia, Q.-K. Xue, and B.-J. Lee, Appl. Phys. Lett. 92, 021909 (2008).
  89. Coulomb sink effect on coarsening of metal nanostructures on surfaces, Y. Han and F. Liu, Front. Phys. 3, 41 (2008).
  90. Quantum modulation of island nucleation on top of a metal nanomesa, Y. Han, M. Hupalo, M. C. Tringides, and F. Liu, Surf. Sci. 602, 62 (2008).
  91. Scanning tunneling microscopy and density functional theory study of initial bilayer growth of Ag films on NiAl(110), B. Unal, F. Qin, Y. Han, D.-J. Liu, D. Jing, A. R. Layson, C. J. Jenks, J. W. Evans, and P. A. Thiel, Phys. Rev. B 76, 195410 (2007).
  92. Quantum size effect on adatom surface diffusion, L.-Y. Ma, L. Tang, Z.-L. Guan, K. He, K. An, X.-C. Ma, J.-F. Jia, Q.-K. Xue, Y. Han, S. Huang, and F. Liu, Phys. Rev. Lett. 97, 266102 (2006).
  93. Determination of the Ehrlich-Schwoebel barrier in epitaxial growth of thin films, S.-C. Li, Y. Han, J.-F. Jia, Q.-K. Xue, and F. Liu, Phys. Rev. B 74, 195428 (2006).
  94. Fabricating artificial nano-wells with tunable size and shape by using scanning tunneling microscopy, S.-C. Li, J.-F. Jia, X. Ma and Q.-K. Xue, Y. Han, and F. Liu, Appl. Phys. Lett. 89, 123111 (2006).
  95. Coulomb sink: a novel Coulomb effect on coarsening of metal nanoclusters on semiconductor surfaces, Y. Han, J. Y. Zhu, F. Liu, S.-C. Li, J.-F. Jia, Y.-F. Zhang, and Q.-K. Xue, Phys. Rev. Lett. 93, 106102 (2004).
  96. Geometric constant defining shape transitions of carbon nanotubes under pressure, J. Zang, A. Treibergs, Y. Han, and F. Liu, Phys. Rev. Lett. 92, 105501 (2004).